Vietnam or Thailand ? Vote for the TOP Country of the Week !

Updated: June 26, 2025


In the center, over the axle, is mounted a dynamo-electric, machine, D, driven by a series of gear wheels that are revolved by winches, MM. Upon the shaft, A, is fixed a hand wheel, V, designed to regulate the motion. In the forepart of the carriage are placed two windlasses, TT, permanently connected with the terminals of the dynamo.

As, however, an understanding of the how and the why of the dynamo-electric machine or generator is the very A B C of electrical engineering, an exposition of the fundamental principles of the mechanical production of electric currents demands an important place in the current science of the day.

This constant could not be determined except by an integration practically impossible; and the product, M C, must be considered indivisible. Some experiments made in 1876, by M. Hagenbach, on a Gramme dynamo-electric machine, appear to indicate that the magnetism, M C, does not increase indefinitely with the intensity, but that there is some maximum value for this quantity.

Early in 1881 it was altogether a paper enterprise, but events moved swiftly as narrated already, and on June 25, 1881, the first "Jumbo" prototype of the dynamo-electric machines to generate current at the Pearl Street station was put through its paces before being shipped to Paris to furnish new sensations to the flaneur of the boulevards.

In 1866 he published the general theory of dynamo-electric machines, and the principle of accumulating the magnetic effect, a principle which, however, had been contemporaneously discovered by Mr. S. A. Varley, and described in a patent some years before by Mr. Soren Hjorth, a Danish inventor.

The dynamo-electric machine, though small, was robust, for under all the varying speeds of water-power, and the vicissitudes of the plant to which it, belonged, it continued in active use until 1899 seventeen years. Edison was from the first deeply impressed with the possibilities of water-power, and, as this incident shows, was prompt to seize such a very early opportunity.

We have not entered into specific descriptions of the many other forms of dynamo machines invented by Edison, such as the multipolar, the disk dynamo, and the armature with two windings, for sub-station distribution; indeed, it is not possible within our limited space to present even a brief digest of Edison's great and comprehensive work on the dynamo-electric machine, as embodied in his extensive experiments and in over one hundred patents granted to him.

Then the machine became the "dynamo-electric" machine, and leaving off one word, according to our custom, "dynamo." Siemens and Wheatstone almost simultaneously invented so much of the dynamo as was yet incomplete. It has "cores" the parts that answer to the legs of a horseshoe magnet of soft iron, sometimes now even of cast iron.

For the steam engines of Henry Giffard, and the muscular force of Dupuy de Lome, electric motors had gradually been substituted. The batteries of bichromate of potassium of the Tissandier brothers had given a speed of four yards a second. The dynamo-electric machines of Captain Krebs and Renard had developed a force of twelve horsepower and yielded a speed of six and a half yards per second.

But we have merely to consider the position which the dynamo-electric machine already occupies in the industrial world, and the far higher position, which, as almost all admit, it is destined to occupy in the future, in order to see how much we owe to Faraday's establishment of the connection between magnetism and electricity. That is one side of the question the debt which art owes to science.

Word Of The Day

serfojee's

Others Looking