United States or Belgium ? Vote for the TOP Country of the Week !


It is also at once obvious when any adjustment of the flame is necessary; there need be no uncertainty as to whether the tube is hot enough or not. The third form of ignition we have to deal with is the electric. There are a great number of different types made and used, but for gas-engine use perhaps that known as the magneto ignition is the most satisfactory.

Lebon, in the certificate dated 1801, in addition to his first patent, described and illustrated a three-cylinder gas-engine in which an explosive mixture of gas and air was to have been ignited by an electric spark.

The greatest economy ever claimed for the steam-engine was a consumption of 1.6 lb.; and this with steam of very high pressure, expanded in three cylinders successively. Thus in a quarter of a century the gas-engine has beaten in the race the steam-engine; although from Watt's first idea of improvement, nearly a century and a quarter have elapsed.

Beginning about twenty years ago with a battery that, without polarizing, would furnish large currents specially adapted for gas-engine ignition and other important purposes, the business has steadily grown in magnitude until the present output amounts to about 125,000 cells annually; the total number of cells put into the hands of the public up to date being approximately 1,500,000.

It is no easy matter to overcome these difficulties completely, but improvements in this direction are continually being made, so that troubles which attended the gas-engine user years ago no longer exist.

Among the most useful inventions of the latter half of the nineteenth century the gas-engine holds a prominent place. While its development has not been so brilliant or so startling as that which we can note in the employment of electricity, it holds, among the applications of heat, the most important place of any invention made within that period.

As the water in the jacket can be safely raised to 212° Fahr., the whole of the jacket heat can be utilized where hot water is required for other purposes; and this, with the exhaust gases, has been used for drying and heating purposes. With such advantages, it may be asked: Why does not the gas-engine everywhere supersede the steam-engine?

We are now in a position to judge what is the practical efficiency of the gas-engine. About the end of 1883 a very elaborate essay, by M. Witz, appeared in the Annales de Chimie et de Physique, reporting experiments on a similar engine, which gave an efficiency somewhat lower. Early in 1884 there appeared in Van Nostrand's Engineering Magazine a most valuable paper, by Messrs.

His object in writing it was that any one who had not paid any attention to the subject before should be able to understand thoroughly the principles on which gas and hot-air engines operated; and he believed any one who read it with moderate care would perfectly understand all the essential conditions of the gas-engine.

It is not impossible even that some of the younger members of our body may live to see that period foretold by one of the greatest of our civil engineers that happy time when boiler explosions will only be matters of history; that period, not a millennium removed by a thousand years, but an era deferred perhaps by only half a dozen decades, when the use of the gas-engine will be universal, and "a steam-engine can be found only in a cabinet of antiquities."