United States or Botswana ? Vote for the TOP Country of the Week !


The product of the different layers of the endosperm is given below, and it will be seen that the quantity of bread increases in a proportion relatively greater than that of the gluten, which proves once more that the gluten of the center or last formation has less consistence than that of the other layers of older formation. The following are the results obtained from the same wheat: Gluten.

The action of saltwater is explained as follows: When the berry is plunged into pure water it will be observed that the water penetrates in the course of a few hours to the very center of the endosperm, but if water charged or saturated with sea salt be used, it will be seen that the liquid immediately passes through the teguments Nos. 2, 3, 4, and 5, and stops abruptly before the embryo membrane No. 6, which will remain quite dry and brittle for several days, the berry remaining all the time in the water.

The largest part of the kernel, called the endosperm, contains the nourishment to be used by the plant as it begins to develop. This is mostly starch, with some protein. It is the part of the wheat, for instance, which is chiefly used to make our white flour. The kind of flour made depends on how much and what parts of the kernel are used.

The function of the endosperm is primarily that of nourishing the embryo, and its basal position in the embryo-sac places it favourably for the absorption of food material entering the ovule. Its duration varies with the precocity of the embryo.

Endospermic food-reserve has evident advantages over perispermic, and the latter is comparatively rarely found and only in non-progressive series. Seeds in which endosperm or perisperm or both exist are commonly called albuminous or endospermic, those in which neither is found are termed exalbuminous or exendospermic.

In albuminous Monocotyledons the cotyledon itself, probably in consequence of its terminal position, is commonly the agent by which the embryo is thrust out of the seed, and it may function solely as a feeder, its extremity developing as a sucker through which the endosperm is absorbed, or it may become the first green organ, the terminal sucker dropping off with the seed-coat when the endosperm is exhausted.

If in its extension to contain the new formations within it the embryo-sac remains narrow, endosperm formation proceeds upon the lines of a cell-division, but in wide embryo-sacs the endosperm is first of all formed as a layer of naked cells around the wall of the sac, and only gradually acquires a pluricellular character, forming a tissue filling the sac.

The idea of the endosperm as a second subsidiary plant is no new one; it was suggested long ago in explanation of the coalescence of the polar nuclei, but it was then based on the assumption that these represented male and female cells, an assumption for which there was no evidence and which was inherently improbable.

As the embryo develops it may absorb all the food material available, and store, either in its cotyledons or in its hypocotyl, what is not immediately required for growth, as reserve-food for use in germination, and by so doing it increases in size until it may fill entirely the embryo-sac; or its absorptive power at this stage may be limited to what is necessary for growth and it remains of relatively small size, occupying but a small area of the embryo-sac, which is otherwise filled with endosperm in which the reserve-food is stored.

Then, by a controlled, gradual reintroduction of foods, they can discover which individual items cause trouble. Flour, And Other Matters Relating To Seeds One of the largest degradations to human health was caused by the roller mill. This apparently profitable machine permitted the miller to efficiently separate wheat flour into three components: bran, germ and endosperm.