Vietnam or Thailand ? Vote for the TOP Country of the Week !
Updated: May 15, 2025
Assume that the diameter of the missing planet was 20,000 miles; that its solid crust was a thousand miles thick; that under this came a shell of molten metallic matter which was another thousand miles thick; and that the space, 16,000 miles in diameter, within this, was occupied by the equally dense mass of gases above the "critical point", which, entering into a proto-chemical combination, caused the destroying explosion.
If, under some condition of pressure and temperature eventually reached, the components of this suddenly entered into one of those proto-chemical combinations forming a new element, there might result an explosion capable of shattering the entire planet, and propelling its fragments in all directions with high velocities.
If we remember that hydrogen and oxygen in their uncombined states oppose, the one an insuperable and the other an almost insuperable, resistance to liquefaction, while when combined the compound assumes the liquid state with facility, we may suspect that in like manner the simpler types of matter out of which the elements were formed, could not have been reduced even to such degrees of density as the known gases show us, without what we may call proto-chemical unions: the implication being that after the heat resulting from each of such proto-chemical unions had escaped, mutual gravitation of the parts was able to produce further condensation of the nebulous mass.
That is to say, in estimating the past period during which solar emission of heat has been going on at a high rate, much must depend on the initial temperature assumed; and this may have been rendered intense by the proto-chemical changes which took place in early stages.
If at the time when the nebulous spheroid from which the Solar System resulted, filled the orbit of Neptune, it had reached such a degree of density as enabled those units of matter which compose the sodium molecules to enter into combination; and if, in conformity with the analogies above indicated, the heat evolved by this proto-chemical combination was great compared with the heats evolved by the chemical combinations known to us; the implication is that the nebulous spheroid, in the course of its contraction, would have to get rid of a much larger quantity of heat than it would, did it commence at any ordinary temperature and had only to lose the heat consequent on contraction.
Respecting the future duration of the solar heat, there must also be differences between the estimates made according as we do or do not take into account the proto-chemical changes which possibly have still to take place.
Word Of The Day
Others Looking