United States or Armenia ? Vote for the TOP Country of the Week !


Now, however small we make the opening BG, there is always the same reason causing the light there to pass between straight lines; since this opening is always large enough to contain a great number of particles of the ethereal matter, which are of an inconceivable smallness; so that it appears that each little portion of the wave necessarily advances following the straight line which comes from the luminous point.

This wave is then represented by the circumference SNR, the centre of which is A, and its semi-diameter equal to two-thirds of CB. Then if one considers in order the other pieces H of the wave AC, it appears that in the same time that the piece C reaches B they will not only have arrived at the surface AB along the straight lines HK parallel to CB, but that, in addition, they will have generated in the diaphanous substance from the centres K, partial waves, represented here by circumferences the semi-diameters of which are equal to two-thirds of the lines KM, that is to say, to two-thirds of the prolongations of HK down to the straight line BG; for these semi-diameters would have been equal to entire lengths of KM if the two transparent substances had been of the same penetrability.

For if, for example, there were an opening BG, limited by opaque bodies BH, GI, the wave of light which issues from the point A will always be terminated by the straight lines AC, AE, as has just been shown; the parts of the partial waves which spread outside the space ACE being too feeble to produce light there.

Thus the portion BG of the wave, having the luminous point A as its centre, will spread into the arc CE bounded by the straight lines ABC, AGE. For although the particular waves produced by the particles comprised within the space CAE spread also outside this space, they yet do not concur at the same instant to compose a wave which terminates the movement, as they do precisely at the circumference CE, which is their common tangent.

Since then the angle HBF is equal to PBA, and the angle BFG equal to QBC, it follows that the sine of the angle HBF will also have the same ratio to the sine of BFG, as the velocity of light in the medium A is to its velocity in the medium C. But these sines are the straight lines HF, BG, if we take BF as the semi-diameter of a circle.

Then these lines HF, BG, will bear to one another the said ratio of the velocities.

And, therefore, the time of the light along HF, supposing that the ray had been OF, would be equal to the time along BG in the interior of the medium C. But the time along AB is equal to the time along OH; therefore the time along OF is equal to the time along AB, BG. Again the time along FC is greater than that along GC; then the time along OFC will be longer than that along ABC. But AF is longer than OF, then the time along AFC will by just so much more exceed the time along ABC.

If one considers further the other pieces H of the wave AC, it appears that they will not only have reached the surface AB by straight lines HK parallel to CB, but that in addition they will have generated in the transparent air, from the centres K, K, K, particular spherical waves, represented here by circumferences the semi-diameters of which are equal to KM, that is to say to the continuations of HK as far as the line BG parallel to AC. But all these circumferences have as a common tangent the straight line BN, namely the same which is drawn from B as a tangent to the first of the circles, of which A is the centre, and AN the semi-diameter equal to BC, as is easy to see.

Wherefore, according to that which has been explained, BN is the propagation of the wave AC at the moment when the piece C of it has arrived at B. For there is no other line which like BN is a common tangent to all the aforesaid circles, except BG below the plane AB; which line BG would be the propagation of the wave if the movement could have spread in a medium homogeneous with that which is above the plane.