Vietnam or Thailand ? Vote for the TOP Country of the Week !

Updated: May 5, 2025


In this case the plate acts as a condenser in series with the coil. It counteracts the self-induction of the latter and allows a strong current to pass. In such a combination, the greater the self-induction of the coil the smaller need be the plate, and this means that a lower frequency, or eventually a lower potential, is required to operate the motor.

When the closed circuit or coil is so placed, and is of such low resistance metal that a comparatively large current can circulate as an induced current, so as to be subject to a large self-induction, the repulsive far exceeds the attractive effort. For want of a better name, I shall call this excess of repulsive effect the "electro-inductive repulsion" of the coils or circuits.

Where this type of interrupter is employed the condenser that is usually shunted around the break is not necessary as the interrupter itself has a certain inherent capacitance, due to electrolytic action, and which is called its electrolytic capacitance, and this is large enough to balance the self-induction of the circuit since the greater the number of breaks per minute the smaller the capacitance required.

The secondary of the coil possesses usually such a high self-induction that the current through the wire is inappreciable, and may be so even when the terminals are joined by a conductor of small resistance. If capacity is added to the terminals, the self-induction is counteracted, and a stronger current is made to flow through the secondary, though its terminals are insulated from each other.

The first thing, then, in operating the induction coil is to combine capacity with the secondary to overcome the self-induction. If the frequencies and potentials are very high gaseous matter should be carefully kept away from the charged surfaces. If Leyden jars are used, they should be immersed in oil, as otherwise considerable dissipation may occur if the jars are greatly strained.

Conversely, when a magnetic line of force is set up a part of its energy goes to make up electric currents which whirl about in a like manner, as shown at B. Self-induction or Inductance.

If it act so, then in a vacuum tube even of great length, and no matter how strong the current, self-induction could not assert itself to any appreciable degree. We have, then, as far as we can now see, in the gas a conductor which is capable of transmitting electric impulses of any frequency which we may be able to produce.

Under the sub-caption of Self-induction and Inductance in the beginning of this chapter it was shown that it was the inductance of a coil that makes a current flowing through it produce a strong magnetic field, and here, as one of the constants of an oscillation circuit, it makes a high-frequency current act as though it possessed inertia.

The best way is undoubtedly to use the condenser in series with the primary and with the alternator, and to adjust its capacity so as to annul the self-induction of both the latter. The condenser should be adjustable by very small steps, and for a finer adjustment a small oil condenser with movable plates may be used conveniently.

The wonderful completeness of Faraday's researches into the production of electricity from magnetism may be inferred from the fact that all the forms of magneto-electric induction known to-day namely, self-induction, or the induction of an active circuit on itself; mutual induction, or the induction of an active circuit on a neighboring circuit; and electro-magnetic induction, and magneto-electric induction, or the induction produced in conductors through which the magnetic flux from electro and permanent magnets respectively is caused to pass were discovered and investigated by him.

Word Of The Day

abitou

Others Looking