United States or Malta ? Vote for the TOP Country of the Week !


But, in fact, the temperature is lowered, because expansion has taken place, and the indicator curve which would then be described is called an "adiabatic curve," which is more inclined to the horizontal line when the volumes are represented by horizontal and the pressures by vertical co-ordinates.

"But how much do you know of prismoidal formulae, or logarithmic secants? not to speak of segmental ordinates, or the cycloidal calculus; or even of adiabatic expansion, or torsional resistance, or the hydrostatic paradox, or the coefficient of friction? Now, these things are the very A B C of mechanics, as you'll find to your utter confusion."

We find this by following down the first line intersected by the adiabatic curve to the point where the zero heat curve intersects this same line, the reading being given in figures to the left immediately opposite. If the air had been admitted to the compressor at 60 degrees, it would register about 176 degrees at 14.7 pounds gauge pressure.

Beginning with the adiabatic curve, we find that for one volume of air when compressed without cooling the curve intersects the first vertical line at a point between 0.6 and 0.7 volume, the gauge pressure being 14.7 pounds. If we assume that this air was admitted to the compressor at a temperature of zero, it will reach about 100 degrees when the gauge pressure is 14.7 pounds.

The upper one being the Adiabatic curve, or that which represents the pressure at any point on the stroke with the heat developed by compression remaining in the air; the lower is the Isothermal, or the pressure curve uninfluenced by heat.

He imagines the atmosphere A C in potential equilibrium with large margin of stability, i.e. the difference of temperature between A and C being much less than the adiabatic gradient. In this condition there is a tendency to cool by radiation until some critical layer, B, reaches its due point.

But let us assume that we have a compressor which shows an adiabatic pressure line. We now have the air in the clearance space acting precisely as a spring, compressed at each stroke, retaining its heat of compression, and giving it out against the air piston at the point when the stroke is reversed.

There is no loss of power in such a case as this, but, on the contrary, the air spring is useful in overcoming the inertia of the piston and moving parts. The best air compressors give a result about midway between the isothermal and the adiabatic, and the net loss of power directly due to clearance is so small as to be practically unworthy of consideration.