Vietnam or Thailand ? Vote for the TOP Country of the Week !


A remarkable use of the 100-inch telescope, which permits its full theoretical resolving power to be not merely attained but to be doubled, has been made possible by the first application of Michelson's interference method to the measurement of very close double stars. When employing this, the 100-inch mirror is completely covered, except for two slits.

Doctor Anderson, of the observatory staff, then devised a special form of interferometer for the measurement of close double stars, and applied it with the 100-inch telescope to the measurement of the orbital motion of the close components of Capella, with results of extraordinary accuracy, far beyond anything attainable by previous methods.

The 20-foot interferometer designed by Messrs. These take the place of the two holes over the object-glass in our experiment. After this the course of the light is exactly as it would be if the mirrors M2, M3 were replaced by two holes over the 100-inch mirror.

After successful preliminary tests with the 40-inch refracting telescope of the Yerkes Observatory, Professor Michelson made the first attempt to see the fringes with the 60-inch and 100-inch reflectors on Mount Wilson in September, 1919. He was surprised and delighted to find that the fringes were perfectly sharp and distinct with the full aperture of both these instruments.

Almost the entire weight of the instrument is thus floated in mercury, and in this way the friction is so greatly reduced that the driving-clock moves the instrument with perfect ease and smoothness. The 100-inch mirror rests at the bottom of the telescope tube on a special support system, so designed as to prevent any bending of the glass under its own weight.

The 100-inch mirror has a focal length of about 42 feet, and in one of the arrangements of the instrument, the photographic plate is mounted at the centre of the telescope tube near its upper end, where it receives directly the image formed by the large mirror.