Vietnam or Thailand ? Vote for the TOP Country of the Week !
Aktualisiert: 14. Juni 2025
Gar viele Handwerker bedürfen einiger Kenntnisse im Zeichnen, in Mathematik und Geometrie, Chemie und andern Wissenschaften und je mehr sie davon erringen, desto besser ist es für ihr Gewerbe.
Das hindert aber nicht, daß man diese Periode ohne Bedenken zu den erfreulichsten für die Geometrie rechnen muß.
Insofern dabei nicht die Frage nach der Geometrie auf der Fläche, der Curve war, es sich vielmehr darum handelte, Criterien zu finden, damit zwei Flächen, Curven in einander transformirt werden können, treten diese Untersuchungen aus dem Kreise der hier zu betrachtenden heraus.
Abgesehen jedoch von aller Wahrscheinlichkeit oder Unwahrscheinlichkeit für die Exactheit obiger Aussprüche in Bezug auf einzelne Namen, dürfte jedenfalls das als unumstössliche Wahrheit gelten, dass die ägyptischen Priester von den Griechen als in den Wissenschaften, insbesondere in der Geometrie sehr bewandert gehalten wurden, und zwar in einem solchen Maasse, dass eine Reihe hervorragender griechischer Philosophen es nicht verschmähte, die, für damalige Verhältnisse nicht unbedeutende Reise nach Aegypten zu unternehmen, ja oft jahrelang in diesem Lande mit unbekannter Sprache und Schrift zu verweilen, um sich die Kenntnisse der Aegypter anzueignen.
Auch das Mittelalter kann keine Veranlassung geben zu einer längeren Erörterung. Die dichte Finsternis, welche in dieser Zeit die ganze Menschheit bedeckte, gestattete nicht das Auftreten eines Gelehrten, dem man irgend einen bemerkenswerten Fortschritt in der Geometrie verdankt. Man kann nur erwähnen, daß die vielfachen in dieser Zeit errichteten heiligen Bauwerke, die nach dem Ausspruche eines großen Dichters so zahlreich und kühn waren, weil sie die einzigen der menschlichen Intelligenz damals erlaubten
Der andere Theil der Auflösung ist nun die Findung derjenigen Linien an der Kurve, welche in jenem Verhältnisse stehen. Anal. Dieß ist, um es ini Vorbeigehen zu erwähnen, der Fundamentalsatz der analytischen Geometrie, welcher die Coordinaten, wie, was dasselbe ist, in der Mechanik das Parallelogramm der Kräfte herbeiführt, das eben darum der vielen Bemühung um einen Beweis ganz unbedürftig ist.
Die erstere Geometrie wollen wir nun nach zwei Seiten verallgemeinern, indem wir statt ihrer Gruppe eine umfassendere setzen. Die resultirende Erweiterung überträgt sich dann durch die Abbildung ohne Weiteres auf ebene Geometrie.
Ich knüpfe an den Zusammenhang an, der zwischen der reellen Ebene und der Kugelfläche durch stereographische Projection hergestellt wird. Wir setzten bereits in §.5 die Geometrie der Ebene mit der Geometrie auf einem Kegelschnitte in Verbindung, indem wir der Geraden der Ebene das Punctepaar zuordneten, in welchem sie den Kegelschnitt trifft.
So verwerthen wir die Geometrie der Ebene für die Geometrie der Flächen, die sich auf die Ebene abbilden lassen; so schloss man schon lange vor dem Entstehen einer eigentlichen projectivischen Geometrie von den Eigenschaften einer gegebenen Figur auf Eigenschaften anderer, die durch Projection aus ihr hervorgingen.
Außer diesem nicht geringen Mangel ist ein anderer noch bedeutenderer dadurch entstanden, daß Plücker lange Zeit hindurch es vernachlässigt hatte, den Fortschritten der Geometrie nachzugehen.
Wort des Tages
Andere suchen