Vietnam or Thailand ? Vote for the TOP Country of the Week !

Aktualisiert: 18. Mai 2025


Diese Frage erscheint um so wichtiger als sich neben die elementare und die projectivische Geometrie, ob auch minder entwickelt, eine Reihe anderer Methoden stellt, denen man dasselbe Recht selbständiger Existenz zugestehen muss. Dahin gehören die Geometrie der reciproken Radien, die Geometrie der rationalen Umformungen etc., wie sie in der Folge noch erwähnt und dargestellt werden sollen.

Ein ähnlicher Entwicklungsgang, wie der hier geschilderte, kann bei jeder Art von räumlicher Transformation als möglich gedacht werden; wir werden noch öfter darauf zurückkommen. Er hat sich innerhalb der projectivischen Geometrie selbst noch nach zwei Seiten vollzogen. Die eine Weiterbildung der Auffassung geschah durch Aufnahme der dualistischen Umformungen in die Gruppe der zu Grunde gelegten Aenderungen. Für den heutigen Standpunct sind zwei einander dualistisch entgegenstehende Figuren nicht mehr als zwei unterschiedene sondern als wesentlich dieselben Figuren anzusehen. Ein anderer Schritt bestand in der Erweiterung der zu Grunde gelegten Gruppe collinearer und dualistischer Umformungen durch Aufnahme der bez. imaginären Transformationen. Dieser Schritt bedingt, dass man vorher den Kreis der eigentlichen Raumelemente durch Hinzunahme der imaginären erweitert habe

Von der Ebene mögen wir, um in den gewohnteren Vorstellungskreis der projectivischen Umformungen zu gelangen, zur Fläche zweiten Grades aufsteigen. Da wir nur reelle Elemente der Ebene betrachteten, ist es nicht mehr gleichgültig, wie man die Fläche wählt; sie ist ersichtlich nicht geradlinig zu nehmen. Insbesondere können wir uns dieselbe

Wenn man die in denselben enthaltenen Betrachtungen noch nicht gleich den projectivischen zu einer besonderen Geometrie zusammengefasst hat, die dann als Gruppe die Gesammtheit derjenigen Umformungen zu Grunde zu legen hätte, welche durch Verbindung der Hauptgruppe mit der Transformation durch reciproke Radien entstehen, so ist das wohl dem zufälligen Umstande zuzuschreiben, dass die genannten Theorien seither nicht im Zusammenhange dargestellt worden sind; den einzelnen Autoren, die in dieser Richtung arbeiteten, wird eine solche methodische Auffassung nicht fern gelegen haben.

In diesem Satze beruht die Eigenart der hier zu besprechenden neueren geometrischen Richtungen und ihr Verhältniss zur elementaren Methode. Sie sind dadurch eben zu characterisiren, dass sie an Stelle der Hauptgruppe eine erweiterte Gruppe räumlicher Umformungen der Betrachtung zu Grunde legen.

Während die Frauen sich mit diesen Umformungen begnügen, lassen sich die Männer in späterem Alter ausserdem noch oben in der Ohrmuschel eine

In Anlehnung an die moderne Ausdrucksweise, die man freilich nur auf eine bestimmte Gruppe, die Gruppe aller linearen Umformungen, zu beziehen pflegt, mag man auch so sagen: Es ist eine Mannigfaltigkeit und in derselben eine Transformationsgruppe gegeben. Man entwickele die auf die Gruppe bezügliche Invariantentheorie.

Elementare Geometrie, Geometrie der reciproken Radien und auch projectivische Geometrie, sofern man von den mit Wechsel des Raumelements verknüpften dualistischen Umformungen absieht, subsumiren sich als einzelne Glieder unter die grosse Menge von denkbaren Betrachtungsweisen, welche überhaupt Gruppen von Puncttransformationen zu Grunde legen.

Für eine Geometrie der rationalen Umformungen, wie sie sich unter Zugrundelegung der Transformationen der ersten Art ergeben muss, sind bis jetzt erst die Anfänge vorhanden. Im Gebiete erster Stufe, auf der geraden Linie, sind die rationalen Umformungen mit den linearen identisch und liefern also nichts Neues. In der Ebene kennt man freilich die Gesammtheit der rationalen Umformungen (der Cremonaschen Transformationen), man weiss, dass sie sich durch Zusammensetzung quadratischer erzeugen lassen. Man kennt auch invariante Charactere der ebenen Curven: ihr Geschlecht, die Existenz der Moduln; aber eigentlich zu einer Geometrie der Ebene in dem hier gemeinten Sinne entwickelt sind diese Betrachtungen noch nicht. Im Raume ist die ganze Theorie noch erst im Entstehen begriffen. Von den rationalen Umformungen kennt man bis jetzt nur wenige und benutzt dieselben, um bekannte Flächen mit unbekannten durch Abbildung in Verbindung zu setzen.

Hiermit war denn der Behandlung im Sinne von §.1 die Gruppe aller projectivischen Umformungen zu Grunde gelegt und dadurch eben der Gegensatz zwischen projectivischer und gewöhnlicher Geometrie geschaffen.

Wort des Tages

delirierende

Andere suchen