Vietnam or Thailand ? Vote for the TOP Country of the Week !

Aktualisiert: 8. Mai 2025


Wir knüpfen diese Auseinandersetzungen an das anschauliche Beispiel, welches die auf eine Fläche zweiten Grades gegründete projectivische Maßbestimmung ergibt. Zwei beliebig angenommene Puncte des Raumes haben in Bezug auf die Fläche eine absolute Invariante: ihr Doppelverhältniss zu den beiden Durchschnittspuncten ihrer Verbindungsgeraden mit der Fläche.

Es sei nur noch hervorgehoben, dass für den Standpunct der Berührungstransformationen eine partielle Differentialgleichung erster Ordnung keine Invariante hat, dass jede in jede andere übergeführt werden kann, dass also namentlich die linearen Gleichungen nicht weiter ausgezeichnet sind. Unterscheidungen treten erst ein, wenn man zu dem Standpuncte der Puncttransformationen zurückgeht.

Für eine Geometrie der rationalen Umformungen, wie sie sich unter Zugrundelegung der Transformationen der ersten Art ergeben muss, sind bis jetzt erst die Anfänge vorhanden. Im Gebiete erster Stufe, auf der geraden Linie, sind die rationalen Umformungen mit den linearen identisch und liefern also nichts Neues. In der Ebene kennt man freilich die Gesammtheit der rationalen Umformungen (der Cremonaschen Transformationen), man weiss, dass sie sich durch Zusammensetzung quadratischer erzeugen lassen. Man kennt auch invariante Charactere der ebenen Curven: ihr Geschlecht, die Existenz der Moduln; aber eigentlich zu einer Geometrie der Ebene in dem hier gemeinten Sinne entwickelt sind diese Betrachtungen noch nicht. Im Raume ist die ganze Theorie noch erst im Entstehen begriffen. Von den rationalen Umformungen kennt man bis jetzt nur wenige und benutzt dieselben, um bekannte Flächen mit unbekannten durch Abbildung in Verbindung zu setzen.

Dadurch sind Punct, Curve, Fläche gemeinsam characterisirt, und so müssen sie auch, wenn man die Gruppe der Berührungstransformationen zu Grunde legen will, analytisch repräsentirt werden. Die vereinigte Lage consecutiver Elemente ist eine bei beliebiger Berührungstransformation invariante Beziehung.

Man hat der analytischen Geometrie häufig den Vorwurf gemacht, durch Einführung des Coordinatensystems willkürliche Elemente zu bevorzugen, und dieser Vorwurf trifft gleichmässig jede Behandlungsweise ausgedehnter Mannigfaltigkeiten, welche das Einzelne durch die Werthe von Veränderlichen characterisirt. War dieser Vorwurf bei der mangelhaften Art, mit der man namentlich früher die Coordinatenmethode handhabte, nur zu oft gerechtfertigt, so verschwindet er bei einer rationellen Behandlung der Methode. Die analytischen Ausdrücke, welche bei der Untersuchung einer Mannigfaltigkeit im Sinne einer Gruppe entstehen können, müssen, ihrer Bedeutung nach, von dem Coordinatensysteme, insofern es zufällig gewählt ist, unabhängig sein, und es gilt nun, diese Unabhängigkeit auch formal in Evidenz zu setzen. Dass dies möglich ist und wie es zu geschehen hat, zeigt die moderne Algebra, in der der formale Invariantenbegriff, um den es sich hier handelt, am deutlichsten ausgeprägt ist. Sie besitzt ein allgemeines und erschöpfendes Bildungsgesetz für invariante Ausdrücke und operirt principiell nur mit solchen. Die gleiche Forderung soll man an die formale Behandlung stellen, auch wenn andere Gruppen, als die projectivische, zu Grunde gelegt sind. Denn der Formalismus soll sich doch mit der Begriffsbildung decken, mag man nun den Formalismus nur als präcisen und durchsichtigen Ausdruck der Begriffsbildung verwerthen, oder will man ihn benutzen, um an seiner Hand in noch unerforschte Gebiete einzudringen.

Wort des Tages

delirierende

Andere suchen