United States or Seychelles ? Vote for the TOP Country of the Week !


In Anlehnung an die moderne Ausdrucksweise, die man freilich nur auf eine bestimmte Gruppe, die Gruppe aller linearen Umformungen, zu beziehen pflegt, mag man auch so sagen: Es ist eine Mannigfaltigkeit und in derselben eine Transformationsgruppe gegeben. Man entwickele die auf die Gruppe bezügliche Invariantentheorie.

Es ist dies ein in der Folge häufig angewandtes Princip, das wir desshalb gleich hier allgemein formuliren wollen; etwa in der folgenden Weise: Es sei eine Mannigfaltigkeit und zu ihrer Behandlung eine auf sie bezügliche Transformationsgruppe gegeben. Es werde das Problem vorgelegt, die in der Mannigfaltigkeit enthaltenen Gebilde hinsichtlich eines gegebenen Gebildes zu untersuchen. So kann man entweder dem Systeme der Gebilde das gegebene hinzufügen, und es fragt sich dann nach den Eigenschaften des erweiterten Systems im Sinne der gegebenen Gruppe

Es lässt sich diese Transformationsgruppe passend characterisiren, wenn man auf den Kegelschnitt, der die Uebergangscurve bildet, eine projectivische Maßbestimmung gründet.

Das Wesentliche ist also die Transformationsgruppe; die Zahl der Dimensionen, die wir einer Mannigfaltigkeit beilegen wollen, erscheint als etwas Secundäres.

Ein Beispiel für eine Transformationsgruppe bildet die Gesammtheit der Bewegungen (jede Bewegung als eine auf den ganzen Raum ausgeführte Operation betrachtet). Eine in ihr enthaltene Gruppe bilden etwa die Rotationen um einen Punct[^8]. Eine Gruppe, welche umgekehrt die Gruppe der Bewegungen umfasst, wird durch die Gesammtheit der Collineationen vorgestellt. Die Gesammtheit der dualistischen Umformungen bildet dagegen keine Gruppe

Bei der zweiten Erweiterung, die wir nannten, gilt es zunächst die Frage nach der Art der bez. Transformationsgruppe erledigen. Es handelt sich darum, Ebenen-Transformationen zu finden, die aus jedem Ebenenbündel, dessen Scheitel auf der Kugel liegt, wieder ein solches Bündel machen.

Im Gegensatze zu der zu Anfang des Paragraphen aufgeworfenen Frage beschäftige uns nun die umgekehrte, die von Vornherein verständlich ist. Wir fragen nach denjenigen Eigenschaften räumlicher Dinge, welche bei einer Transformationsgruppe erhalten bleiben, die die Hauptgruppe als einen Theil umfasst.

Die Analysis situs. In der sog. Analysis situs sucht man das Bleibende gegenüber solchen Umformungen, die aus unendlich kleinen Verzerrungen durch Zusammensetzung entstehen. Auch hier muss man, wie bereits gesagt, unterscheiden, ob das ganze Gebiet, also etwa der Raum, als Object der Transformationen gedacht werden soll, oder nur eine aus ihm ausgesonderte Mannigfaltigkeit, eine Fläche. Die Transformationen der ersten Art sind es, die man einer Raumgeometrie würde zu Grunde legen können. Ihre Gruppe wäre wesentlich anders constituirt, als die bisher betrachteten es waren. Indem sie alle Transformationen umfasst, die sich aus reell gedachten unendlich kleinen Puncttransformationen zusammensetzen, trägt sie die principielle Beschränkung auf reelle Raumelemente in sich, und bewegt sich auf dem Gebiete der willkürlichen Function. Man kann diese Transformationsgruppe nicht ungeschickt erweitern, indem man sie noch mit den reellen Collineationen, die auch das unendlich Ferne modificiren, verbindet.

Als Verallgemeinerung der Geometrie entsteht so das folgende umfassende Problem: Es ist eine Mannigfaltigkeit und in derselben eine Transformationsgruppe gegeben; man soll die der Mannigfaltigkeit angehörigen Gebilde hinsichtlich solcher Eigenschaften untersuchen, die durch die Transformationen der Gruppe nicht geändert werden.

Was besonders betont sein mag, ist die Willkürlichkeit, die hinsichtlich der Wahl der zu adjungirenden Transformationsgruppe besteht, und die daraus fliessende und in diesem Sinne zu verstehende gleiche Berechtigung aller sich unter die allgemeine Forderung subsumirenden Betrachtungsweisen. Transformationsgruppen, von denen die eine die andere umfasst, werden nach einander adjungirt.