Vietnam or Thailand ? Vote for the TOP Country of the Week !

Aktualisiert: 25. Juni 2025


Durch eine Verknüpfung ähnlicher Ueberlegungen, wie sie soeben entwickelt wurden, erhält man hieraus den Satz: Die Theorie der quaternären Formen deckt sich mit der projectivischen Maßbestimmung in einer durch 6 homogene Veränderliche erzeugten Mannigfaltigkeit.

Wenn man die in denselben enthaltenen Betrachtungen noch nicht gleich den projectivischen zu einer besonderen Geometrie zusammengefasst hat, die dann als Gruppe die Gesammtheit derjenigen Umformungen zu Grunde zu legen hätte, welche durch Verbindung der Hauptgruppe mit der Transformation durch reciproke Radien entstehen, so ist das wohl dem zufälligen Umstande zuzuschreiben, dass die genannten Theorien seither nicht im Zusammenhange dargestellt worden sind; den einzelnen Autoren, die in dieser Richtung arbeiteten, wird eine solche methodische Auffassung nicht fern gelegen haben.

Der Hauptsatz, der in der Geometrie, welche die Gruppe aller Puncttransformationen zu Grunde legt, in Geltung ist, ist der, dass eine Puncttransformation für eine unendlich kleine Partie des Raumes immer den Werth einer linearen Transformation hat. Die Entwickelungen der projectivischen Geometrie haben also nun ihren Werth für das Unendlichkleine, und hierin liegt, mag sonst die Wahl der Gruppe bei Behandlung von Mannigfaltigkeiten willkürlich sein

Ein ähnlicher Entwicklungsgang, wie der hier geschilderte, kann bei jeder Art von räumlicher Transformation als möglich gedacht werden; wir werden noch öfter darauf zurückkommen. Er hat sich innerhalb der projectivischen Geometrie selbst noch nach zwei Seiten vollzogen. Die eine Weiterbildung der Auffassung geschah durch Aufnahme der dualistischen Umformungen in die Gruppe der zu Grunde gelegten Aenderungen. Für den heutigen Standpunct sind zwei einander dualistisch entgegenstehende Figuren nicht mehr als zwei unterschiedene sondern als wesentlich dieselben Figuren anzusehen. Ein anderer Schritt bestand in der Erweiterung der zu Grunde gelegten Gruppe collinearer und dualistischer Umformungen durch Aufnahme der bez. imaginären Transformationen. Dieser Schritt bedingt, dass man vorher den Kreis der eigentlichen Raumelemente durch Hinzunahme der imaginären erweitert habe

Wenn wir beliebige Gebilde als Raumelemente einführen, so erhält der Raum beliebig viele Dimensionen. Wenn wir dann aber an der uns geläufigen (elementaren oder projectivischen) Anschauungsweise festhalten, so ist die Gruppe, welche wir für die mehrfach ausgedehnte Mannigfaltigkeit zu Grunde zu legen haben, von Vorne herein gegeben; es ist eben die Hauptgruppe bez. die Gruppe der projectivischen Umformungen. Wollten wir eine andere Gruppe zu Grunde legen, so müssten wir von der gewöhnlichen bez. der projectivischen Anschauung abgehen. So richtig es also ist, dass bei geschickter Wahl der Raumelemente der Raum Mannigfaltigkeiten von beliebig vielen Ausdehnungen repräsentirt, so wichtig ist es, hinzuzufügen, dass bei dieser Repräsentation entweder von Vorneherein eine bestimmte Gruppe der Behandlung der Mannigfaltigkeit zu Grunde zu legen ist, oder dass wir, wollen wir über die Gruppe verfügen, unsere geometrische Auffassung entsprechend auszubilden haben.

Wenn es anfänglich schien, als sollten die sogenannten metrischen Beziehungen ihrer Behandlung nicht zugänglich sein, da sie beim Projiciren nicht ungeändert bleiben, so hat man in neuerer Zeit gelernt, auch sie vom projectivischen Standpuncte aufzufassen, so dass nun die projectivische Methode die gesammte Geometrie umspannt.

So verwerthen wir die Geometrie der Ebene für die Geometrie der Flächen, die sich auf die Ebene abbilden lassen; so schloss man schon lange vor dem Entstehen einer eigentlichen projectivischen Geometrie von den Eigenschaften einer gegebenen Figur auf Eigenschaften anderer, die durch Projection aus ihr hervorgingen.

Dann aber haben uns diese Untersuchungen mit einem werthvollen mathematischen Begriffe beschenkt: dem Begriffe einer Mannigfaltigkeit von constanter Krümmung. Er hängt, wie bereits bemerkt und wie in §.10 des Textes noch weiter ausgeführt ist, mit der unabhängig von aller Parallelentheorie erwachsenen projectivischen Maßbestimmung auf das Innigste zusammen.

Als ein Seitenstück zu den Betrachtungsweisen der projectivischen Geometrie kann man in vielfacher Hinsicht eine Classe geometrischer Ueberlegungen betrachten, bei denen von der Umformung durch reciproke Radien fortlaufender Gebrauch gemacht wird. Es gehören hierher die Untersuchungen über die sog.

Wort des Tages

ibla

Andere suchen