Vietnam or Thailand ? Vote for the TOP Country of the Week !

Mis à jour: 13 juin 2025


La théorie générale des contacts plus ou moins intimes qui peuvent exister entre deux surfaces quelconques par suite des relations plus ou moins nombreuses de leurs équations, se forme d'après une méthode exactement semblable

Telles sont les équations différentielles fondamentales du mouvement curviligne, d'après lesquelles les questions quelconques de dynamique relatives

En second lieu, qu'on veuille connaître la longueur de l'arc d'une courbe quelconque, considéré comme une fonction des coordonnées de ses extrémités. Il serait impossible d'établir immédiatement l'équation entre cet arc s et ces coordonnées, tandis qu'il est aisé de trouver la relation correspondante entre les différentielles de ces diverses grandeurs. Les plus simples théorèmes de la géométrie élémentaire donneront, en effet, sur-le-champ, en considérant l'arc infiniment petit ds comme une ligne droite, les équations /[ds^2 = dy^2 + dx^2, /mbox{ou}ds^2 = dx^2 + dy^2 + dz^2, /] suivant que la courbe sera plane ou

La marche rationnelle serait donc la suivante: partir de l'état actuel, introduire comme fonctions du temps les principaux éléments du système, volumes, densités, durées de rotation et de révolution; former les équations différentielles dont ces fonctions dépendent; les intégrer au moins approximativement; dans les intégrales, donner au temps des valeurs positives ou négatives, suivant que l'on veut prévoir l'avenir ou reconstituer le passé.

Il s'agit alors de différentier, non-seulement sans savoir résoudre les équations primitives, mais même sans pouvoir effectuer entr'elles les éliminations convenables, ce qui constitue une nouvelle difficulté.

Pour certaines questions, qui, quoiqu'en petit nombre, n'en ont pas moins, ainsi que nous le verrons plus tard, une très-grande importance, les grandeurs cherchées se trouvent même entrer directement, et non par leurs différentielles, dans les équations différentielles primitives, qui ne contiennent alors différentiellement que les diverses fonctions connues, employées comme intermédiaires d'après l'explication précédente. Ces cas sont, de tous, les plus favorables, car, il est évident que le calcul différentiel suffit alors entièrement

Pour se représenter nettement, en général, comment le principe des vitesses virtuelles peut conduire aux équations fondamentales de l'équilibre des fluides, il suffit de considérer que tout ce qu'une telle application exige de particulier consiste seulement

La division fondamentale du calcul intégral est fondée sur le même principe que celle ci-dessus exposée pour le calcul différentiel, en distinguant l'intégration des formules différentielles explicites, et l'intégration des différentielles implicites, ou des équations différentielles. La séparation de ces deux cas est même bien plus profonde relativement

Cet accroissement de difficulté est tel, que jusqu'ici la résolution des équations algébriques ne nous est connue que dans les quatre premiers degrés seulement. À cet égard, l'algèbre n'a pas fait de progrès considérables depuis les travaux de Descartes, et des analystes italiens du seizième siècle, quoique, dans les deux derniers siècles, il n'ait peut-être pas existé un seul géomètre qui ne se soit occupé de pousser plus avant la résolution des équations. L'équation générale du cinquième degré elle-même, a jusqu'ici résisté

Quoiqu'il fût aisé de former, d'après les règles de la dynamique rationnelle, les équations différentielles du mouvement d'un quelconque des astres de notre monde, sollicité par ses diverses gravitations variables vers tous les autres, l'ensemble de ces équations ne constituerait, en réalité, dans l'état présent de nos connaissances mathématiques, et probablement toujours, qu'une énigme analytique absolument inextricable, dont il serait impossible de tirer aucun parti effectif pour l'étude des phénomènes célestes. Obligés de renoncer

Mot du Jour

d'expéditions

D'autres à la Recherche