Vietnam or Thailand ? Vote for the TOP Country of the Week !

Aktualisiert: 25. Juni 2025


In dem so eben Dargestellten liegt weiter der Grund, warum Theils die Auflösung der höheren Gleichungen in der Zurückführung auf die quadratische bestehen muß, Theils warum die Gleichungen von ungeraden Exponenten sich nur formell bestimmen, und gerade wenn die Wurzeln rational sind, diese sich nicht anders als durch einen imaginären Ausdruck, d. h. der das Gegentheil dessen ist, was die Wurzeln sind und ausdrücken, finden lassen.

Wie angegeben wurde, daß man diese Bedeutung, was die Anwendung hieß, anderswoher, empirisch aufnahm, so muß bei den hier in Rede stehenden durch Differentation abgeleiteten Gleichungen anderswoher gewußt werden, ob sie gleiche Wurzeln haben, um zu wissen, ob die erhaltene Gleichung noch richtig sey.

Es sei nur noch hervorgehoben, dass für den Standpunct der Berührungstransformationen eine partielle Differentialgleichung erster Ordnung keine Invariante hat, dass jede in jede andere übergeführt werden kann, dass also namentlich die linearen Gleichungen nicht weiter ausgezeichnet sind. Unterscheidungen treten erst ein, wenn man zu dem Standpuncte der Puncttransformationen zurückgeht.

Selbst das Verfahren der Algeber mit ihren Gleichungen, aus denen sie durch Reduktion die Wahrheit zusamt dem Beweise hervorbringt, ist zwar keine geometrische, aber doch charakteristische Konstruktion, in welcher man an den Zeichen die Begriffe, vornehmlich von dem Verhältnisse der Größen, in der Anschauung darlegt, und, ohne einmal auf das Heuristische zu sehen, alle Schlüsse vor Fehlern dadurch sichert, daß jeder derselben vor Augen gestellt wird.

Selbst das Verfahren der Algeber mit ihren Gleichungen, aus denen sie durch Reduktion die Wahrheit zusamt dem Beweise hervorbringt, ist zwar keine geometrische, aber doch charakteristische Konstruktion, in welcher man an den Zeichen die Begriffe, vornehmlich von dem Verhältnisse der Größen, in der Anschauung darlegt, und, ohne einmal auf das Heuristische zu sehen, alle Schlüsse vor Fehlern dadurch sichert, daß jeder derselben vor Augen gestellt wird.

Für einige dieser Flächenfamilien hat Monge die Konstruktion angegeben, für alle die Gleichungen, sei es die Differentialgleichungen oder die endlichen, und, da er sich das Problem gestellt und gelöst hat, von jenen zu diesen zu gelangen, so verdient denn sein grosses Werk, daß es auch von denen, welche sich mit der Analysis des Unendlichen beschäftigen, eingehend studiert werde.

Wort des Tages

zähneklappernd

Andere suchen