Vietnam or Thailand ? Vote for the TOP Country of the Week !
Aktualisiert: 29. Mai 2025
Als die Begriffsbestimmtheit des sogenannten Unendlich-Kleinen ist die qualitative Quantitäts-Bestimmtheit solcher, die zunächst als Quanta im Verhältniß zu einander gesetzt sind, aufgezeigt worden, woran sich die empirische Untersuchung knüpfte, jene Begriffs-Bestimmtheit in den Beschreibungen oder Definitionen nachzuweisen, die sich von dem Unendlich-Kleinen, insofern es als unendliche Differenz und dergleichen genommen ist, vorfinden.
Es ist die Absicht dieser Anmerkungen gewesen, die affirmativen Bestimmungen, die bei dem verschiedenen Gebrauch, der von dem Unendlich-kleinen in der Mathematik gemacht wird, so zu sagen im Hintergrunde bleiben, aufzuweisen und sie aus der Nebulosität hervorzuheben, in welche sie durch jene bloß negativ gehaltene Kategorie gehüllt werden.
In der vorigen Anmerkung ist Theils die Begriffsbestimmtheit des Unendlich-Kleinen, das in dem Differential-Kalkul gebraucht wird, Theils die Grundlage seiner Einführung in denselben betrachtet worden; Beides sind abstrakte und darum an sich auch leichte Bestimmungen; die sogenannte Anwendung aber bietet größere Schwierigkeiten sowohl als auch die interessantere Seite dar; die Elemente dieser konkreten Seite sollen der Gegenstand dieser Anmerkung seyn.
Es wird nicht geläugnet werden können, daß man sich in diesem Felde vieles als Beweis, vornehmlich unter der Beihülfe des Nebels des Unendlich-Kleinen hat gefallen lassen, aus keinem andern Grunde als dem, daß das, was herauskam, immer schon vorher bekannt war, und der Beweis, der so eingerichtet wurde, daß es herauskam, wenigstens den Schein eines Gerüstes von Beweis zu Stande brachte; einen Schein, den man dem bloßen Glauben oder dem Wissen aus Erfahrung immer noch vorzog.
Gegen die angegebenen Bestimmungen steht die Vorstellung von unendlich-kleinen Größen, die auch im Inkrement oder Dekrement selbst steckt, weit zurück.
Das Angeführte ist auch dieselbe Dialektik, die der Verstand gegen den Begriff braucht, den die höhere Analysis von den unendlich-kleinen Größen giebt. Von diesem Begriffe wird weiter unten ausführlicher gehandelt.
Das Bedürfniß, dieß Moment des qualitativen Übergangs zu erhalten und dafür zu dem Unendlich-kleinen die Zuflucht zu nehmen, muß als die Quelle aller der Vorstellungen angesehen werden, welche, indem sie jene Schwierigkeit ausgleichen sollen, an ihnen selbst die größte Schwierigkeit sind.
Lagrange hat bekanntlich die ursprüngliche Methode Newtons, die Methode der Reihen, wieder aufgenommen, um der Schwierigkeiten, welche die Vorstellung des Unendlich-Kleinen, so wie derjenigen, welche die Methode der ersten und letzten Verhältnisse und Grenzen mit sich führt, überhoben zu seyn.
Ebendamit hat der Erweis der größern Kleinheit nichts mit einem Unendlich-Kleinen zu thun, das hiermit hier keineswegs hereinzukommen hat.
Die Kontinuität des Quantums in sein Anderes bringt die Verbindung beider in dem Ausdruck eines Unendlich-Großen oder Unendlich-Kleinen hervor. Da beide die Bestimmung des Quantums noch an ihnen haben, bleiben sie veränderliche und die absolute Bestimmtheit, die ein Für-sichseyn wäre, ist also nicht erreicht.
Wort des Tages
Andere suchen