Vietnam or Thailand ? Vote for the TOP Country of the Week !
Aktualisiert: 1. Mai 2025
VI. Liniengeometrie als Untersuchung einer Mannigfaltigkeit von constantem Krümmungsmaße. Es wird daher nöthig, zu überlegen, welchen Werth eine projectivische Maßbestimmung für ihre unendlich fernen Elemente hat, und das mag hier etwas auseinandergesetzt werden, um Schwierigkeiten, die sich sonst der Auffassung der Liniengeometrie als einer Maßgeometrie entgegen stellen, zu entfernen.
Die Geometrie der reciproken Radien ist einer Einkleidung fähig, welche sie neben die Theorie der binären Formen und die Liniengeometrie stellt, falls man die letzteren in der Weise behandelt, wie das im vorigen Paragraphen angedeutet wurde.
Die Raumgeometrie ist also durch die Geometrie der reciproken Radien in ganz dieselbe Verbindung mit einer Mannigfaltigkeit von vier Dimensionen gesetzt, wie vermöge der Liniengeometrie mit einer Mannigfaltigkeit von fünf Ausdehnungen.
Wurden vorstehend die zweierlei Erweiterungen nur an die Geometrie der reciproken Radien angeknüpft, so gelten dieselben in entsprechender Weise für Liniengeometrie, überhaupt für die projectivische Untersuchung einer durch eine quadratische Gleichung ausgeschiedenen Mannigfaltigkeit, wie bereits angedeutet wurde, hier aber nicht weiter ausgeführt werden soll.
Fasst man die gerade Linie als Raumelement und ertheilt ihr, wie in der Liniengeometrie geschieht, sechs homogene Coordinaten, zwischen denen eine Bedingungsgleichung vom zweiten Grade Statt findet, so erscheinen die linearen und dualistischen Transformationen des Raumes als diejenigen linearen Transformationen der unabhängig gedachten sechs Veränderlichen, welche die Bedingungsgleichung in sich überführen.
Alle diese Sätze und Betrachtungen können nun ohne Weiteres für Liniengeometrie benutzt werden. Für den Linienraum selbst existirt zunächst keine eigentliche Maßbestimmung. An die Auszeichnung eines Complexes ist namentlich auch die Geltung eines absoluten Bogenelements geknüpft. VII. Zur Interpretation der binären Formen.
An die Theorie der binären Formen, die Geometrie der reciproken Radien und die Liniengeometrie, welche im Vorstehenden coordinirt und nur durch die Zahl der Veränderlichen unterschieden scheinen, lassen sich gewisse Erweiterungen knüpfen, die nun auseinandergesetzt werden mögen. Dieselben sollen einmal dazu beitragen, den Gedanken, dass die Gruppe, welche die Behandlungsweise gegebener Gebiete bestimmt, beliebig erweitert werden kann, an neuen Beispielen zu erläutern; dann aber ist namentlich die Absicht gewesen, Betrachtungen, welche Lie in einer neueren Abhandlung niedergelegt hat[^25], in ihrer Beziehung zu den hier vorgetragenen Ueberlegungen darzulegen. Der Weg, auf welchem wir zu Lies Kugelgeometrie gelangen, weicht insofern von dem von Lie eingeschlagenen ab, als Lie an liniengeometrische Vorstellungen anknüpft, während wir, um uns mehr der gewöhnlichen geometrischen Anschauung anzuschliessen und im Zusammenhange mit dem Vorhergehenden zu bleiben, bei den bez. Auseinandersetzungen eine geringere Zahl von Veränderlichen voraussetzen. Die Betrachtungen sind, wie bereits Lie selbst hervorgehoben hat (Göttinger Nachrichten 1871. N.
Von der Willkürlichkeit in der Wahl des Raumelements. Das Hessesche Uebertragungsprincip. Die Liniengeometrie.
Wort des Tages
Andere suchen