Vietnam or Thailand ? Vote for the TOP Country of the Week !

Mis à jour: 26 juin 2025


Quoiqu'il fût aisé de former, d'après les règles de la dynamique rationnelle, les équations différentielles du mouvement d'un quelconque des astres de notre monde, sollicité par ses diverses gravitations variables vers tous les autres, l'ensemble de ces équations ne constituerait, en réalité, dans l'état présent de nos connaissances mathématiques, et probablement toujours, qu'une énigme analytique absolument inextricable, dont il serait impossible de tirer aucun parti effectif pour l'étude des phénomènes célestes. Obligés de renoncer

La division fondamentale du calcul intégral est fondée sur le même principe que celle ci-dessus exposée pour le calcul différentiel, en distinguant l'intégration des formules différentielles explicites, et l'intégration des différentielles implicites, ou des équations différentielles. La séparation de ces deux cas est même bien plus profonde relativement

Si Pascal, dont le génie n'a pas eu de supérieurs, avait rencontré comme Leibniz le principe des différentielles, sans parler de révolution dans la science, il aurait choisi, pour les produire, les conséquences précises les moins voisines de l'évidence, s'il n'avait préféré, comme il l'a fait souvent, laisser disparaître avec lui la trace de ses méditations. On pourrait comparer Leibniz

Ce calcul, créé par Taylor, dans son célèbre ouvrage intitulé méthodes incrumentorum, consiste essentiellement, comme on sait, dans la considération des accroissemens finis que reçoivent les fonctions par suite d'accroissemens analogues de la part des variables correspondantes. Ces accroissemens ou différences, auxquels on applique la caractéristique /Delta, pour les distinguer des differentielles ou accroissemens infiniment petits, peuvent être,

D'après les diverses considérations indiquées ci-dessus sur l'enchaînement rationnel des différentes parties principales du calcul intégral, on voit que l'intégration des formules différentielles explicites du premier ordre

Pour certaines questions, qui, quoiqu'en petit nombre, n'en ont pas moins, ainsi que nous le verrons plus tard, une très-grande importance, les grandeurs cherchées se trouvent même entrer directement, et non par leurs différentielles, dans les équations différentielles primitives, qui ne contiennent alors différentiellement que les diverses fonctions connues, employées comme intermédiaires d'après l'explication précédente. Ces cas sont, de tous, les plus favorables, car, il est évident que le calcul différentiel suffit alors entièrement

Au reste, quand ou examine, d'une manière très-approfondie, cette distinction des divers ordres d'équations différentielles, on trouve qu'elle pourrait rentrer constamment dans une dernière distinction générale, relative aux équations différentielles, que j'ai encore

Le calcul différentiel est évidemment la base rationnelle du calcul intégral. Car nous ne savons et ne pouvons savoir intégrer immédiatement que les expressions différentielles produites par la différentiation des diverses fonctions simples qui constituent les élémens généraux de notre analyse. L'art de l'intégration consiste ensuite essentiellement

Telles sont les équations différentielles fondamentales du mouvement curviligne, d'après lesquelles les questions quelconques de dynamique relatives

Supposons, comme on peut évidemment toujours le faire, que l'axe de rotation soit pris pour axe des abcisses; et, suivant l'esprit de la méthode infinitésimale proprement dite, la seule bien convenable jusqu'ici aux recherches de cette nature, concevons que l'abcisse augmente d'une quantité infiniment petite: cet accroissement déterminera dans l'arc et dans l'aire de la courbe des augmentations différentielles analogues qui, par la révolution autour de l'axe, engendreront les élémens de la surface et du volume cherchés. Il est aisé de voir que, en négligeant seulement un infiniment petit du second ordre tout au plus, on pourra regarder ces élémens comme égaux

Mot du Jour

guèbres

D'autres à la Recherche