Vietnam or Thailand ? Vote for the TOP Country of the Week !
Aktualisiert: 26. Juni 2025
Sieht man von dem ausgezeichneten Puncte ab und betrachtet also die projectivische Geometrie auf der Fläche an sich, so hat man ein Bild der Geometrie der reciproken Radien in der Ebene. Man hat also: Geometrie der reciproken Radien in der Ebene und projectivische Geometrie auf einer Fläche zweiten Grades ist dasselbe,
Es soll dies nun an den einzelnen Methoden gezeigt werden, wobei denn die Sätze, die in diesem und dem vorigen Paragraphen allgemein hingestellt wurden, ihre Erläuterung an concreten Gegenständen finden. Die projectivische Geometrie. Jede räumliche Umformung, die nicht gerade der Hauptgruppe angehört, kann dazu benutzt werden, um Eigenschaften bekannter Gebilde auf neue Gebilde zu übertragen.
Wenn es anfänglich schien, als sollten die sogenannten metrischen Beziehungen ihrer Behandlung nicht zugänglich sein, da sie beim Projiciren nicht ungeändert bleiben, so hat man in neuerer Zeit gelernt, auch sie vom projectivischen Standpuncte aufzufassen, so dass nun die projectivische Methode die gesammte Geometrie umspannt.
VI. Liniengeometrie als Untersuchung einer Mannigfaltigkeit von constantem Krümmungsmaße. Es wird daher nöthig, zu überlegen, welchen Werth eine projectivische Maßbestimmung für ihre unendlich fernen Elemente hat, und das mag hier etwas auseinandergesetzt werden, um Schwierigkeiten, die sich sonst der Auffassung der Liniengeometrie als einer Maßgeometrie entgegen stellen, zu entfernen.
Dies ist die einzige Particularisation, die in ihrer Beziehung eintreten kann, wenn sie nicht zusammenfallen, und wir haben also den Satz: Die projectivische Maßbestimmung, welche man im Raume auf eine Fläche zweiten Grades gründen kann, ergibt für die Geometrie auf der Fläche noch keine Maßbestimmung. Der Raumpunct sei zunächst nicht auf der Fläche gelegen.
Diese Frage erscheint um so wichtiger als sich neben die elementare und die projectivische Geometrie, ob auch minder entwickelt, eine Reihe anderer Methoden stellt, denen man dasselbe Recht selbständiger Existenz zugestehen muss. Dahin gehören die Geometrie der reciproken Radien, die Geometrie der rationalen Umformungen etc., wie sie in der Folge noch erwähnt und dargestellt werden sollen.
Ein anderes Beispiel, welches geeignet ist, diese Art von Betrachtungen zu veranschaulichen, ist das folgende: Wenn man eine Fläche zweiten Grades mit einer Ebene durch stereographische Projection in Verbindung setzt, so tritt auf der Fläche ein Fundamentalpunct auf: der Projectionspunct, in der Ebene sind es zwei: die Bilder der durch den Projectionspunct gehenden Erzeugenden. Man zeigt nun ohne Weiteres: Die linearen Transformationen der Ebene, welche die beiden Fundamentalpuncte derselben ungeändert lassen, gehen durch die Abbildung in lineare Transformationen der Fläche zweiten Grades in sich selbst über, aber nur in diejenigen, welche den Projectionspunct ungeändert lassen. Unter linearen Transformationen der Fläche in sich selbst sind dabei diejenigen Aenderungen verstanden, welche die Fläche erfährt, wenn man lineare Raumtransformationen ausführt, welche die Fläche mit sich selbst zur Deckung bringen. Hiernach wird also die projectivische Untersuchung einer Ebene unter Zugrundelegung zweier Puncte und die projectivische Untersuchung einer Fläche zweiten Grades unter Zugrundelegung eines Punctes identisch. Die erstere ist nun
Wir mögen hier nur die folgenden drei Methoden, die hierin mit den genannten übereinstimmen, hervorheben. Sind diese Methoden auch lange nicht in dem Maße, wie die projectivische Geometrie, zu selbständigen Disciplinen entwickelt, so treten sie doch deutlich erkennbar in den neueren Untersuchungen auf. Die Gruppe der rationalen Umformungen.
Der hier dargelegte Zusammenhang zwischen der Geometrie der Ebene, weiterhin des Raumes oder einer beliebig ausgedehnten Mannigfaltigkeit deckt sich im Wesentlichen mit dem von Hesse vorgeschlagenen Uebertragungsprincipe . Ein Beispiel ganz ähnlicher Art ergibt die projectivische Geometrie des Raumes, oder, anders ausgedrückt, die Theorie der quaternären Formen.
Wir knüpfen diese Auseinandersetzungen an das anschauliche Beispiel, welches die auf eine Fläche zweiten Grades gegründete projectivische Maßbestimmung ergibt. Zwei beliebig angenommene Puncte des Raumes haben in Bezug auf die Fläche eine absolute Invariante: ihr Doppelverhältniss zu den beiden Durchschnittspuncten ihrer Verbindungsgeraden mit der Fläche.
Wort des Tages
Andere suchen