Vietnam or Thailand ? Vote for the TOP Country of the Week !

Mis à jour: 28 juillet 2025


Il est aisé de comprendre l'identité générale et nécessaire de cette méthode avec celle des limites, compliquée de l'idée étrangère du mouvement. En effet, reprenant le cas de la courbe, si l'on suppose, comme on peut évidemment toujours le faire, que le mouvement du point décrivant est uniforme suivant une certaine direction, par exemple, dans le sens de l'abcisse, alors la fluxion de l'abcisse sera constante, comme l'élément du temps. Pour toutes les autres quantités engendrées, le mouvement ne pourrait être conçu comme uniforme que pendant un temps infiniment petit. Cela posé, la vitesse étant généralement, d'après sa notion mécanique, le rapport de chaque espace au temps employé

Supposons, comme on peut évidemment toujours le faire, que l'axe de rotation soit pris pour axe des abcisses; et, suivant l'esprit de la méthode infinitésimale proprement dite, la seule bien convenable jusqu'ici aux recherches de cette nature, concevons que l'abcisse augmente d'une quantité infiniment petite: cet accroissement déterminera dans l'arc et dans l'aire de la courbe des augmentations différentielles analogues qui, par la révolution autour de l'axe, engendreront les élémens de la surface et du volume cherchés. Il est aisé de voir que, en négligeant seulement un infiniment petit du second ordre tout au plus, on pourra regarder ces élémens comme égaux

Pour en faire concevoir l'idée-mère avec plus de facilité, considérons toute courbe comme engendrée par un point animé d'un mouvement varié suivant une loi quelconque. Les diverses quantités que la courbe peut offrir, l'abcisse, l'ordonnée, l'arc, l'aire, etc., seront envisagées comme simultanément produites par degrés successifs pendant ce mouvement. La vitesse avec laquelle chacune aura été décrite sera dite la fluxion de cette quantité, qui, en sens inverse, en serait nommée la fluente. Dès lors, l'analyse transcendante consistera, dans cette conception,

Mot du Jour

offero

D'autres à la Recherche