Vietnam or Thailand ? Vote for the TOP Country of the Week !

Aktualisiert: 11. Juni 2025


Die Entwickelung der Potenzengrößen, wodurch sich die Funktionen ihrer Potenzirung ergeben, enthält, von näherer Bestimmung abstrahirt, zunächst überhaupt die Herabsetzung der Größe auf die nächst niedrigere Potenz. Die Anwendbarkeit dieser Operation findet also bei solchen Gegenständen statt, bei welchen gleichfalls ein solcher Unterschied von Potenzenbestimmungen vorhanden ist.

Bei einer Gleichung mit zwei veränderlichen Größen, die darum, daß sie veränderliche sind, den Charakter unbekannte Größen zu seyn nicht verlieren, kommt, wie oben betrachtet wurde, nur ein Verhältniß heraus, aus dem angegebenen einfachen Grunde, weil durch das Substituiren der Funktionen der Potenzirung an die Stelle der Potenzen selbst der Werth der beiden Glieder der Gleichung verändert wird, und es für sich selbst noch unbekannt ist, ob auch zwischen ihnen bei so veränderten Werthen noch eine Gleichung Statt finde.

Aber hierbei haben wir wesentlich das fernere Interesse zu unterscheiden, nämlich das Verhältniß der zu Grunde liegenden Größe selbst, deren Bestimmtheit, insofern sie ein Komplex d. i. hier eine Gleichung, ist, eine Potenz in sich schließt, zu den Funktionen ihrer Potenzirung.

Worauf es ankommt, ist allein die, hiermit qualitative Bestimmtheit der Glieder, welche sich durch die Potenzirung der als Summe angenommenen Wurzel ergiebt, welche Bestimmtheit allein in der Veränderung, die das Potenziren ist, liegt. Diese Glieder sind somit ganz Funktionen der Potenzirung und der Potenz.

Doch diesen abstrakten Gesichtspunkt konnten wir auch auf der Seite lassen; es kann ganz einfach dabei stehen geblieben werden, daß nachdem die veränderlichen Größen in der Gleichung als Funktionen von einander, so daß diese Bestimmtheit ein Verhältniß von Potenzen enthält, gegeben sind, nun auch die Funktionen der Potenzirung einer jeden mit einander verglichen werden, welche zweiten Funktionen durch gar nichts Anderes weiter als durch die Potenzirung selbst bestimmt sind.

Der Funktionen-Kalkul soll es allerdings mit Funktionen der Potenzirung oder die Differentialrechnung mit Differentialien zu thun haben, aber daraus folgt für sich noch keineswegs, daß die Größen, deren Differentialien oder Funktionen der Potenzirung genommen werden, selbst auch nur Funktionen anderer Größen seyn sollen.

In dem theoretischen Theile, der Anweisung, die Differentiale, d. i. die Funktionen der Potenzirung abzuleiten, wird ohnehin noch nicht daran gedacht, daß die Größen, die nach solcher Ableitung zu behandeln gelehrt wird, selbst Funktionen anderer Größen seyn sollen.

Jene Darstellung nun der Zahl, als Summe einer Menge von solchen Gliedern, welche Funktionen der Potenzirung sind, alsdenn das Interesse, die Form solcher Funktionen, und ferner diese Summe aus der Menge solcher Glieder, zu finden, insofern dieses Finden allein von jener Form abhängen muß, dieß macht bekanntlich die besondere Lehre von den Reihen aus.

Von diesen beiden Funktionen ist die abgeleitete, oder wie sie bestimmt worden ist, die Funktion der Potenzirung, hier in diesem Kalkul die gegebene, relativ gegen die ursprüngliche, als welche erst aus jener durch die Integration, gefunden werden soll.

Wort des Tages

ibla

Andere suchen