United States or Gibraltar ? Vote for the TOP Country of the Week !


The pile fowl as recognised and described by fanciers is dominant in colour, not recessive as in the case above described. In fact, a recessive pile does not appear ever to have been mentioned before the publication of the results of my experiment. It would seem, therefore, that the pile is the heterozygote of black-red and 'dominant' white.

Rubricalyx is therefore a dominant heterozygote, and this fact was further confirmed in the third generation when a selfed plant gave 200 offspring all rubricalyx, the mother plant having evidently been homozygous for the red character.

If the mutation were due to the loss of one factor affecting the eye, the heterozygote carrying the normal factor from the mother only might very well develop a somewhat imperfect eye. Morgan arranges the numerous mutations observed in Drosophila in four groups, corresponding in his opinion to the four pairs of chromosomes occurring in the cells of the insect.

It varied in different individuals, but in some, at any rate, was greater in later generations than in the earlier. The condition bred true, as pure recessives do; and when such an impure recessive was mated with a heterozygote with black skin, the offspring were half pigmented and half recessive, with some pigment on the abdomen of the latter.

Since the heterozygote in F1 was deeply pigmented, it is certain that a bird with only a small amount of pigment in its skin was a recessive resulting from incomplete segregation of the pigmented character. The pigment occurred chiefly in the skin of the abdomen and round the eyes, and also in the peritoneum and in the connective tissue of the abdominal wall.

When the latter occurs there would be no segregation and the heterozygote would breed true. The most interesting fact is that a given factor in the cases I have described, namely, colour of plumage and pigmentation, of skin in the Jungle fowl and the Silky, is not a permanent and indivisible unit, but is capable of subdivision in any proportion.

or heterozygote dominants and pure recessives in equal numbers. It is evident that the reproduction of the sexes is very similar to this. One of the remarkable facts about sex is that, although the uniting gametes are male and female yet they give rise to males and females in equal numbers. If one sex were a dominant this would be in accordance with Mendelian theory.

If a heterozygote is bred with a pure recessive the offspring are half heterozygote and half recessive. The heterozygote individual in typical cases shows the dominant character. In the formation of its gametes when the reduction division of the chromosomes takes place, half of them receive the dominant character, half the recessive.

A dominant is something present which is absent in the recessive: the rose comb is due to a factor which is absent from the single. The two segregate in the gametes of the hybrid or heterozygote, and if a recessive gamete is fertilised by another recessive gamete the single comb reappears.

In Mendelian experiments, a heterozygote individual is one arising from gametes containing opposite members of a pair of characters, in other words, from the union of a gamete carrying a dominant with another carrying a recessive. A pure recessive individual is one arising from the union of two gametes both carrying recessives.