United States or Monaco ? Vote for the TOP Country of the Week !


Late observations by Cailletet, in France, however, tend to the establishment of a new doctrine on this subject which solves many difficulties and will probably be accepted by botanists as definitive.

It was necessary to reduce the temperature to below the critical point; and it was by adopting this course that MM. Cailletet and Raoul Pictet achieved their success. The rapid escape of the compressed gas itself from a condition of great condensation at an extremely low temperature was employed as the agent for producing a greater degree of cold than it had been possible before to obtain.

M. Cailletet, having fruitlessly subjected air and hydrogen to a pressure of one thousand atmospheres, came to the conclusion that it was impossible to liquefy those gases at the ordinary temperature by pressure alone.

Many others, MM. Cailletet and Colardeau, M. Young, M.J. Chappuis, etc., have proceeded thus. The case of mixtures is much more complicated. A binary mixture has a critical space instead of a critical point. This space is comprised between two extreme temperatures, the lower corresponding to what is called the folding point, the higher to that which we call the point of contact of the mixture.

This result was obtained in 1877 by Pictet and Cailletet almost simultaneously. Cailletet had also liquefied the newly discovered acetylene gas. Five years later Wroblewski liquefied marsh gas, and the following year nitrogen; while carbonic oxide and nitrous oxide yielded to Olzewski in 1884.

The experiments have since been continued and improved upon by MM. Cailletet and Pictet, and others, with more complete results than had been attained at the time the first reports were published, and with the elucidation of some novel properties of gases, and the disclosure of relations, previously not well understood, between the gaseous and the liquid condition.

M. Cailletet devised a cheaper process, by employing another hydrocarbon that rises from the mud of marshes, and is called formene. MM. Cailletet, Wroblewski, and Olzewski have continued their experiments in liquefaction, and acquired increased facility in the handling of liquid ethylene, formene, atmospheric air, oxygen, and nitrogen.

The classical work of Andrews was not very wide. Andrews did not go much beyond pressures close to the normal and ordinary temperatures. Of late years several very interesting and peculiar cases have been examined by MM. Cailletet, Mathias, Batelli, Leduc, P. Chappuis, and other physicists.

Some fifty years since, when the kinetic theory was in its infancy, Faraday liquefied carbonic-acid gas, among others, and the experiments thus inaugurated have been extended by numerous more recent investigators, notably by Cailletet in Switzerland, by Pictet in France, and by Dr. Thomas. Andrews and Professor James Dewar in England.

Cailletet finds that under normal conditions, that is, when the soil is humid enough to supply sufficient moisture through the roots, no water is absorbed by the leaves, buds, or bark of plants, but when the roots are unable to draw from the earth the requisite quantity of this fluid, the vegetable pores in contact with the atmosphere absorb it from that source.