United States or Saint Lucia ? Vote for the TOP Country of the Week !


It is possible to dissolve the arsenious oxide directly in a solution of sodium bicarbonate, with gentle warming, but solution in sodium hydroxide takes place much more rapidly, and the excess of the hydroxide is readily neutralized by hydrochloric acid, with subsequent addition of the bicarbonate to maintain neutrality during the titration.

Add two drops of phenolphthalein solution, and run in alkali from the burette until the solution is pink; add acid from the other burette until the pink is just destroyed, and then add 0.3 cc. Heat the solution to boiling for three minutes. If no color reappears during this time, complete the titration in the hot solution.

Moreover, if the procedure is followed as prescribed, the concentration of unoxidized iron decreases very rapidly as the titration is carried out so that when the final tests are made, though large drops may be taken, the amount of ferrous iron is not sufficient to produce any appreciable error in results. !Selection of a Standard!

With respect to the delay which must take place during the titration in order to give the precipitate time to fall, it is advantageous, in order to save time, to work with several samples; but it is, in such a case, desirable to have a separate burette for each sample, in order to avoid noting every addition of the chameleon solution and afterward adding them up.

Just as an acid solution was the principal reagent in alkalimetry, and the alkali solution used only to make certain of the end-point, the solution of the oxidizing agent is the principal reagent for the titration of substances exerting a reducing action.

A drop of such a solution, corresponding to about one-twentieth cubic centimeter, or 0.0001 gramme Mn, is sufficient to give a perceptible reddish color to 200 cubic centimeters of water. As what takes place in the titration of iron with chameleon is indicated by the following formula, 10FeO + 2KMnO = 5Fe O + K O + 2MnO ,

For example, the amount of MnO in a sample of the mineral pyrolusite may be determined by dissolving the mineral in hydrochloric acid, absorbing the evolved chlorine in a solution of potassium iodide, and measuring the liberated iodine by titration with a standard solution of sodium thiosulphate.

If soluble starch is not at hand, potato starch may be used. Mix about 1 gram with 5 cc. of cold water to a smooth paste, pour 150 cc. of !boiling! water over it, warm for a moment on the hot plate, and put it aside to settle. Decant the supernatant liquid through a filter and use the clear filtrate; 5 cc. of this solution are needed for a titration.

Make a blank test for the amount of thiosulphate solution required to react with the iodine liberated by the iodate which is generally present in the potassium iodide solution, and deduct this from the total volume used in the titration.

It is also desirable that a sufficient excess of the acid should be present to react with a considerable volume of the permanganate solution during the titration, thus increasing the accuracy of the process. On the other hand, the excess of oxalic acid should not be so large as to react with more of the permanganate solution than is contained in a 50 cc. burette.